Publications

List of published research relevant to the research program

 

Prof. Dr. med. Christian Bogdan

  1. Paduch K, Debus A, Rai B, Schleicher U* and Bogdan C*. (2019). Resolution of cutaneous leishmaniasis and persistence of Leishmania major in the absence of arginase 1. J Immunol 202: 1453-64 (*shared senior authorship).
  2. Leitherer S, Clos J, Liebler-Tenorio EM, Schleicher U, Bogdan C and Soulat D. (2017). Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infect Immun 85 (8): e00084-17.
  3. Schleicher U*, Paduch K*, Debus A*, Obermeyer S, König T, Kling J C, Ribechini E, Dudziak D, Mougiakakos D, Murray PJ, Ostuni R, Körner H and Bogdan C. (2016). TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection. Cell Rep 15: 1062-75. (* shared first authorship)
  4. Jebran AF, Schleicher U, Steiner R, Wentker P, Mahfuz F, Stahl HC, Amin FM*, Bogdan C*, Stahl KW*§. (2014). Rapid Healing of Cutaneous Leishmaniasis by High-Frequency Electrocauterization and Hydrogel Wound Care with or without DAC N-055: A Randomized Controlled Phase IIa Trial in Kabul. PLoS Negl Trop Dis. 8(2):e2694. (*shared senior authorship; § corresponding authors).
  5. Stahl H C, Ahmadi F, Schleicher U, Sauerborn R, Bermejo JL, Amirih ML, Sakhayee I, Bogdan C, Stahl (2014). A randomized controlled phase IIb wound healing trial of cutaneous leishmaniasis ulcers with 0.045% pharmaceutical chlorite (DAC N-055) with and without bipolar high frequency electro-cauterization versus intralesional antimony in Afghanistan. BMC Infect Dis. 2014 Nov 25;14:619.
  6. Mahnke A, Meier R J, Schatz V, Hofmann J, Castiglione K, Schleicher U, Wolfbeis O S, Bogdan C and Jantsch J. (2014). Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. J Invest Dermatol 134: 2339-46.
  7. Nairz M, Schleicher U, Schroll A, Sonnweber T, Theurl I, Ludwiczek S, Talasz H, Brandacher G, Moser PL, Muckenthaler M U, Fang F C, Bogdan C, Weiss G. (2013). Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella J Exp Med 210: 855-73.
  8. Wiese M, Gerlach R G, Popp I, Matuszak J, Mahapatro M, Castiglione K, Chakravortty D, Willam C, Hensel M, Bogdan C and Jantsch J. (2012). Hypoxia-mediated impairment of the mitochondrial respiratory chain inhibits the bactericidal activity of macrophages. Infect Immun 80: 1455-66.
  9. El-Gayar S, Thüring-Nahler H, Pfeilschifter J, Röllinghoff M, and Bogdan C. (2003). Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunol 171: 4561-68
  10. Bogdan C, Donhauser N, Doring R, Röllinghoff M, Diefenbach A and Rittig M G. (2000). Fibroblasts as host cells in latent leishmaniosis. J Exp Med 191: 2121-30.

 

Prof. Aline Bozec, PhD

  1. Hannemann N, Cao S, Eriksson D, Schnelzer A, Jordan J, Eberhardt M, Schleicher U, Rech J, Ramming A, Uebe S, Ekici A, Cañete JD, Chen X, Bäuerle T, Vera J, Bogdan C, Schett G, and Bozec A. (2019). Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. J Clin Invest. 2019 Apr 16;130:2669-2684.
  1. Meng X, Grötsch B, Luo Y, Knaup K, Wiesener M, Chen XX, Jantsch J, Fillatreau S, Schett G and Bozec A. (2018). Hypoxia-inducible factor-1a is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat Commun 9(1): 251. doi: 10.1038/s41467-017-02683-x.
  2. Ubieta K, Garcia M, Grötsch B, Uebe S, Weber G, Stein M, Ekici A, Schett G, Mielenz D, and Bozec A. (2017). Fra-2 regulates B cell development by enhancing IRF4 and Foxo1 transcription J Exp Med 214: 2059-71.
  3. Luther J, Ubieta K, Hannemann N, Jimenez M, Garcia M, Zech C, Schett G, Wagner EF and Bozec A. (2014). Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARγ and hypoxia. Cell Death Differ 21(4):655-64.
  4. Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Kommenovic V, Priemel M, Stewart CL, Amling M and Wagner EF. (2008). Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature 454 (7201): 221-25.

 

PD Dr. rer. nat Katja Dettmer-Wilde

  1. Sun X, Berger R S, Heinrich P, Marchiq I, Pouyssegur J, Renner K, Oefner P J, and Dettmer K. (2020a) Optimized Protocol for the In Situ Derivatization of Glutathione with N-Ethylmaleimide in Cultured Cells and the Simultaneous Determination of Glutathione/Glutathione Disulfide Ratio by HPLC-UV-QTOF-MS. Metabolites 10:292.
  2. Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici AB, Rauh M, Daniel C, Hartmann A, Schmid B, Tripal P, Dettmer K, Oefner P J, Atreya R, Wirtz S, Bogdan C and Mattner J. (2020b). Arginase expression impedes the resolution of intestinal inflammation by altering the fecal microbiome and the metabolome. J Clin Invest. doi: 10.1172/JCI126923.
  3. Sun X, Heinrich P, Berger RS, Oefner P J and Dettmer K. (2019a). Quantification and 13C-Tracer analysis of total reduced glutathione by HPLC-QTOFMS/MS. Analytica Chimica Acta 1080: 127-137.
  4. Hayek I, Fischer F, Schulze-Luehrmann J, Dettmer K, Sobotta K, Schatz V, Kohl L, Boden K, Lang R, Oefner P J, Wirtz S, Jantsch J and Lührmann A. (2019b). Limitation of TCA Cycle Intermediates Represents an Oxygen-Independent Nutritional Antibacterial Effector Mechanism of Macrophages. Cell Rep 26: 3502-3510.
  5. Heinrich P, Kohler C, Ellmann L, Kuerner P, Spang R, Oefner P J and Dettmer K. (2018). Correcting for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-resolution-multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR. Sci Rep 8: 17910.
  6. Assmann N, O’Brien K L, Donnelly R P, Dyck L, Zaiatz-Bittencourt V, Loftus R M, Heinrich P, Oefner P J, Lynch L, Gardiner C M, Dettmer K and Finlay D K. (2017). Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 18: 1197-1206.
  7. Siegert I, Schödel J, Nairz M, Schatz V, Dettmer K, Dick C, Kalucka J, Franke K, Ehrenschwender M, Schley G, Beneke A, Sutter J, Moll M, Hellerbrand C, Wielockx B, Katschinski D M, Lang R, Galy B, Hentze M W, Koivunen P, Oefner P J, Bogdan C, Weiss G, Willam C and Jantsch J. (2015a). Ferritin-mediated iron sequestration stabilizes hypoxia-inducible factor-1alpha upon LPS activation in the presence of ample oxygen. Cell Rep 13: 2048-55.
  8. Weber D, Oefner P J, Hiergeist A, Koestler J, Gessner A, Weber M, Hahn J, Wolff D, Stämmler F, Spang R, Herr W, Dettmer K and Holler E. (2015b). Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 126: 1723-8.
  9. Dettmer K, Vogl F C, Ritter A P, Zhu W, Nürnberger N, Kreutz M, Oefner P J, Gronwald W and Gottfried E. (2013). Distinct metabolic differences between various human cancer and primary cells. Electrophoresis 34: 2836-47.
  10. Dettmer K, Nürnberger N, Kaspar H, Gruber M A, Almstetter M F and Oefner P J. (2011). Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399: 1127-39.

 

Prof. Dr. med. Jonathan Jantsch

  1. Hayek I, Fischer F, Schulze-Lührmann J, Dettmer K, Sobotta K, Schatz V, Kohl L, Boden K, Lang R, Oefner PJ, Wirtz S, Jantsch J* and Lührmann A* (2019a). Limitation of TCA-cycle intermediates represents an oxygen-independent nutritional antibacterial effector mechanism of macrophages. Cell Reports 26: 3502-3510 e3506. (*shared senior authorship).
  1. Schatz V, Neubert P, Rieger F, and Jantsch J. (2018). Hypoxia, hypoxia-inducible factor 1alpha, and innate antileishmanial immune responses. Front Immunol. Feb 26;9:263. doi: 10.3389/fimmu.2018.00263. eCollection 2018.
  2. Schatz V, Strüssmann Y, Mahnke A, Schley G, Waldner M, Ritter U, Wild J, Willam C, Dehne N, Brüne B, McNiff J M, Colegio O R, Bogdan C and Jantsch J. (2016). Myeloid cell-derived HIF-1alpha promotes control of Leishmania major. J Immunol 197: 4034-41.
  3. Jennewein J, Matuszak J, Walter S, Felmy B, Gendera K, Schatz V, Nowottny M, Liebsch G, Hensel M, Hardt W D, Gerlach R G and Jantsch J. (2015). Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence. Cell Microbiol 17: 1833-47.
  4. Siegert I, Schödel J, Nairz M, Schatz V, Dettmer K, Dick C, Kalucka J, Franke K, Ehrenschwender M, Schley G, Beneke A, Sutter J, Moll M, Hellerbrand C, Wielockx B, Katschinski D M, Lang R, Galy B, Hentze M W, Koivunen P, Oefner P J, Bogdan C, Weiss G, Willam C and Jantsch J. (2015). Ferritin-mediated iron sequestration stabilizes hypoxia-inducible factor-1alpha upon LPS activation in the presence of ample oxygen. Cell Rep 13: 2048-55.
  5. Mahnke A, Meier R J, Schatz V, Hofmann J, Castiglione K, Schleicher U, Wolfbeis O S, Bogdan C and Jantsch J. (2014). Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. J Invest Dermatol 134: 2339-2346.
  6. Hofmann J, Meier R J, Mahnke A, Schatz V, Brackmann F, Trollmann R, Bogdan C, Liebsch G, Wang X D, Wolfbeis O S and Jantsch J. (2013). Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation. Methods Appl Fluoresc 1(4): 045002.
  7. Wiese M, Gerlach R G, Popp I, Matuszak J, Mahapatro M, Castiglione K, Chakravortty D, Willam C, Hensel M, Bogdan C and Jantsch J. (2012). Hypoxia-mediated impairment of the mitochondrial respiratory chain inhibits the bactericidal activity of macrophages. Infect Immun 80: 1455-66.
  8. Wiese M, Castiglione K, Hensel M, Schleicher U, Bogdan C and Jantsch J. (2010). Small interfering RNA (siRNA) delivery into murine bone marrow-derived macrophages by electroporation. J Immunol Methods 353: 102-10.
  9. Jantsch J, Chakravortty D, Turza N, Prechtel A T, Buchholz B, Gerlach R G, Volke M, Glasner J, Warnecke C, Wiesener M S, Eckardt K U, Steinkasserer A, Hensel M and Willam C. (2008). Hypoxia and HIF-1a modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180: 4697-705.

 

PD Dr. med. Regina Jitschin, PhD 

  1. Tohumeken S, Baur R, Böttcher M, Stoll A, Loschinski R, Panagiotidis K, Braun M, Saul D, Völkl S, Baur A S, Bruns H, Mackensen A, Jitschin R* and Mougiakakos D*. (2020). Palmitoylated proteins on AML-derived extracellular vesicles promote myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR signaling. Cancer Res. 80 (17): 3663-3676.
  1. Jitschin R, Böttcher M, Saul D, Lukassen S, Bruns H, Loschinski R, Ekici A B, Reis A, Mackensen A and Mougiakakos D. (2019). Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation. Leukemia, 33(7):1783-1796.
  1. Jitschin R, Saul D, Braun M, Tohumeken S, Völkl S, Kischel R, Lutteropp M, Dos Santos C, Mackensen A and Mougiakakos D. (2018). CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells. Journal Immunother Cancer, 6(1):116.
  2. Qorraj M, Bruns H, Böttcher M, Weigand L, Saul D, Mackensen A, Jitschin R and Mougiakakos D. (2017). The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia, Leukemia 31(2):470-478.
  1. Braun M, Qorraj M, Büttner M, Klein F A, Saul D, Aigner M, Huber W, Mackensen A, Jitschin R and Mougiakakos D. (2016). CXCL12 Promotes Glycolytic Reprogramming in Acute Myeloid Leukemia Cells via the CXCR4/mTOR Axis. Leukemia 30(8):1788-92.
  2. Jitschin R, Braun M, Qorraj, Saul D, Le Blanc K, Zenz T and Mougiakakos D. (2015). Stromal cell-mediated glycolytic switch in CLL-cells involves Notch-c-Myc signaling. Blood 125(22):3432-6.
  3. Jitschin R, Braun M, Büttner M, Bricks J, Berger J, Eckart M J, Krause S W, Le Blanc K, Mackensen A, and Mougiakakos D. (2014). CLL-cells induce IDOhi CD14+HLA-DRlo myeloid derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 124(5):750-60.
  4. Jitschin R, Hofmann AD, Bruns H, Gießl A, Bricks J, Berger J, Saul D, Eckart M J, Mackensen A, and Mougiakakos D. (2014). Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood 123(17):2663-72.
  5. Mougiakakos D*, Jitschin R*, von Bahr L, Poschke I, Gary R, Sundberg B, Gerbitz A, Ljungman P and Le Blanc K. (2013). Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic HSCT. Leukemia 27(2):377-88.
  6. Jitschin R*, Mougiakakos D*, von Bahr L, Völkl S, Moll G, Ringden O, Kiessling R, Linder S and Le Blanc K. (2013). Alterations in the cellular immune compartment of patients treated with third-party MSCs following allogeneic hematopoietic stem-cell transplantation. Stem Cells, 31(8):1715-25.

 

Prof. Dr. rer. nat. Sven Krappmann 

  1. Binder J, Held J and Krappmann S. (2019). Impairing fluoride export of Aspergillus fumigatus mitigates its voriconazole resistance. Int J Antimicrob Agents 53: 689-93.
  2. Yu Y, Blachowicz A, Will C, Szewczyk E, Glenn S, Gensberger-Reigl S, Nowrousian M, Wang C C C and Krappmann S. (2018). Mating-type factor-specific regulation of the fumagillin/ pseurotin secondary metabolite supercluster in Aspergillus fumigatus. Mol Microbiol 10: 1045-65.
  3. Amich J, Dümig M, O’Keeffe G, Binder J, Doyle S, Beilhack A and Krappmann S. (2016). Exploration of sulfur assimilation of Aspergillus fumigatus reveals biosynthesis of sulfur-containing amino acids as a virulence determinant. Infect Immun 84: 917-29.
  4. Kaltdorf M, Srivastava M, Gupta S K, Liang C, Binder J, Dietl A M, Meir Z, Haas H, Osherov N, Krappmann S and Dandekar T. (2016). Systematic identification of anti-fungal drug targets by a metabolic network approach. Front Mol Biosci 3: 22.
  5. Krappmann S. (2016). How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 34: 136-46.
  6. Sasse A, Hamer S N, Amich J, Binder J and Krappmann S. (2016). Mutant characterization and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence. Virulence 7: 56-62.
  7. Amich J, Schafferer L, Haas H and Krappmann S. (2013). Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 9: e1003573.
  8. Amich J and Krappmann S. (2012). Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality. Front Microbiol 3: 414.
  9. Hartmann T, Cairns T C, Olbermann P, Morschhäuser J, Bignell E M and Krappmann S. (2011). Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 82: 917-35.
  10. Bergmann A, Hartmann T, Cairns T, Bignell E M and Krappmann S. (2009). A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 77: 4041-50.

 

Dr. rer. nat. Meik Kunz

  1. Fuchs M, Kreutzer F P, Kapsner L A, Mitzka S, Just A, Perbellini F, Terracciano C M, Xiao K, Geffers R, Bogdan C, Prokosch H U, Fiedler J, Thum T* and Kunz M*. Integrative Bioinformatic Analyses of Global Transcriptome Data Decipher Novel Molecular Insights into Cardiac Anti-Fibrotic Therapies. Int J Mol Sci., 2020; 21(13): 4727. (*equally contributing last authors).
  2. Stojanović S D, Fuchs M, Kunz M, Xiao K, Just A, Pich A, Bauersachs J, Fiedler J, Sedding D and Thum T. Inflammatory Drivers of Cardiovascular Disease: Molecular Characterization of Senescent Coronary Vascular Smooth Muscle Cells. Front Physiol., 2020; 11:520.
  3. Stojanović S D, Fuchs M, Fiedler J, Xiao K, Meinecke A, Just A, Pich A, Thum T and Kunz M. Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts. Int J Mol Sci., 2020; 21(11): 4126.
  4. Kunz M*, Wolf B*, Fuchs M*, Christoph J, Xiao K, Thum T, Atlan D, Prokosch H U and Dandekar T. A comprehensive method protocol for annotation and integrated functional understanding of Brief Bioinform., 2020; 21(4): 1391-1396. (*equally contributing first authors).
  5. Kunz M, Jeromin J, Fuchs M, Christoph J, Veronesi G, Flentje M, Nietzer S, Dandekar G and Dandekar T. In silico signalling modeling to understand cancer pathways and treatment responses. Brief Bioinform., 2020; 21(3): 1115-1117.
  6. Baur F*, Nietzer S*, Kunz M*, Saal F*, Jeromin J, Matschos S, Linnebacher M, Walles H, Dandekar T and Dandekar G. (2019). Connecting cancer pathways to tumor engines: A stratification tool for colorectal cancer combining human in vitro tissue models with Boolean in silico Cancers (Basel) 20;12(1). pii: E28. (*equally contributing first authors).
  7. Vey J, Kapsner L A, Fuchs M, Unberath P, Veronesi G and Kunz M. A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning. (2019). Cancers (Basel) 11(10): 1606.
  8. Göttlich C*, Kunz M*, Zapp C, Nietzer S, Walles H, Dandekar T and Dandekar G. A combined tissue engineered/in silico signature tool for patient stratification in lung cancer. (2018). Mol Oncol 12(8): 1264-1285 (*equally contributing first authors).
  9. Kunz M*, Liang C*, Nilla S, Cecil A and Dandekar T. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development. (2016). Database (Oxford) pii: baw041. (*equally contributing first authors).
  10. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S and Thum T. (2016). Long noncoding RNA Chast promotes cardiac remodeling. Transl Med 8(326): 326ra22.

 

PD Dr. rer. nat. Anja Lührmann

  1. Hayek I, Fischer F, Schulze-Lührmann J, Dettmer K, Sobotta K, Schatz V, Kohl L, Boden K, Lang R, Oefner PJ, Wirtz S, Jantsch J* and Lührmann A*. (2019a). Limitation of TCA-cycle intermediates represents an oxygen-independent nutritional antibacterial effector mechanism of macrophages. Cell Reports 26: 3502-3510 e3506. (*shared senior authorship).
  1. Hayek I, Berens C and Lührmann A. (2019b). Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol 47: 59-65.
  1. Schäfer W, Eckart R A, Schmid B, Cagköylü H, Hof K, Muller Y A, Amin B and Lührmann A. (2017). Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-alpha1. Cell Microbiol 19: e12634.
  1. Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes J P and Lührmann A. (2016). The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence 7: 400-12.
  2. Eckart R A, Bisle S, Schulze-Luehrmann J, Wittmann I, Jantsch J, Schmid B, Berens C and Lührmann A. (2014). Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun 82: 2763-71.
  3. Klingenbeck L, Eckart R A, Berens C and Lührmann A. (2013). The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol 15: 675-87.
  4. Lührmann A, Nogueira C V, Carey K L and Roy C R. (2010). Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107: 18997-9001.
  5. Pan X, Lührmann A, Satoh A, Laskowski-Arce M A and Roy C R. (2008). Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320: 1651-4.

 

Dr. rer. nat. Michaela Petter

  1. Vivax Sporozoite Consortium#: Muller I, Jex A.R., Kappe S H I, Mikolajczak S A, Sattabongkot J, Patrapuvich R, Lindner S, Flannery E L, Koepfli C, Ansell B, Lerch A, Emery-Corbin S J, Charnaud S, Smith J, Merrienne N, Swearingen K E, Moritz R L, Petter M, Duffy M F and Chuenchob V. (2019). Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. International Journal of Parasitology 49(7): 501-513. (#All authors are equal contributors).
  2. Duffy M F, Tang J, Sumardy F, Nguyen H H, Selvarajah S A, Josling G A, Day K P, Petter M and Brown G V. (2017). Activation and clustering of a Plasmodium falciparum var gene are affected by subtelomeric sequences. FEBS Journal 284 (2) 237-257.
  3. Josling G A*, Petter M*, Oehring S C, Gupta A P, Dietz O, Wilson D W, Schubert T, Längst G, Gilson P R, Crabb B S, Moes S, Jenoe P, Lim M, Brown G V,  Bozdech Z, Voss T S and Duffy M F. (2015). A Plasmodium falciparum Bromodomain Protein Regulates Invasion Gene Expression. Cell Host Microbe 17 (6): 741-51 (*shared first authorship).
  4. Duffy M F, Selvarajah, S A, Josling G A and Petter M. (2014). Epigenetic Regulation of the falciparum genome (Review). Briefings in Functional Genomics 13(3):203-16.
  5. Petter M, Selvarajah S A, Lee C C, Chin W H, Gupta A P, Bozdech Z, Brown G V and Duffy M F. (2013). H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol Microbiology 87(6):1167-82.
  6. Volz J C, Bartfai R, Petter M, Langer C, Josling G A, Tsuboi T, Schwach F, Baum J, Rayner J C, Stunnenberg H G, Duffy M F and Cowman A F. (2012). PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host Microbe 11 (1): 7-18.
  7. Duffy M F, Selvarajah S A, Josling G A and Petter M (2012). The role of chromatin in Plasmodium gene expression. Cell Microbiology 14 (6): 819-828.
  8. Josling G A, Selvarajah S A, Petter M and Duffy M F. (2012). The Role of Bromodomain Proteins in Regulating Gene Expression. Gene 3: 320-343.
  9. Petter M., Lee C C, Byrne T J, Boysen K E, Volz J, Ralph S A, Cowman A F, Brown G V and Duffy M.F. (2011). Expression of falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathogens, 7 (2):e1001292.

 

PD Dr. rer. nat. Ulrike Schleicher

  1. Paduch K, Debus A, Rai B, Schleicher U* and Bogdan C*. (2019). Resolution of cutaneous leishmaniasis and persistence of Leishmania major in the absence of arginase 1. J Immunol 202: 1453-64 (*shared senior authorship).
  1. Messlinger H, Sebald H, Heger L, Dudziak D, Bogdan C and Schleicher U. (2018). Monocyte-derived signals activate human natural killer cells in response to Leishmania parasites. Front Immunol 9: 24.
  2. Schleicher U, Liese J, Justies N, Mischke T, Haeberlein S, Sebald H, Kalinke U, Weiss S and Bogdan C. (2018). Type I interferon signaling is required for CpG-oligodesoxy-nucleotide-induced control of Leishmania major, but not for spontaneous cure of subcutaneous cure of primary and secondary L. major infection. Front Immunol 9: 79.
  3. Paul C, Wolff S, Zapf T, Raifer H, Feyerabend T B, Bollig N, Camara B, Trier C, Schleicher U, Rodewald H R and Lohoff M. (2016). Mast cells have no impact on cutaneous leishmaniasis severity and related Th2 differentiation in resistant and susceptible mice. Eur J Immunol 46: 114-21.
  4. Schleicher U*, Paduch K*, Debus A*, Obermeyer S, König T, Kling J C, Ribechini E, Dudziak D, Mougiakakos D, Murray P J, Ostuni R, Körner H and Bogdan C. (2016). TNF-mediated restriction of arginase 1 expression in myeloid cells triggers type 2 NO synthase activity at the site of infection. Cell Reports 15: 1062-75. (* shared first authorship)
  5. Prajeeth C K, Haeberlein S, Sebald H, Schleicher U* and Bogdan C*. (2011). Leishmania-infected macrophages are targets of NK cell-derived cytokines but not of NK cell cytotoxicity. Infect Immun 79: 2699-708. (* shared senior authorship)
  6. Haeberlein S, Sebald H, Bogdan C and Schleicher U. (2010). IL-18, but not IL-15, contributes to the IL-12-dependent induction of NK-cell effector functions by Leishmania infantum in vivo. Eur J Immunol 40: 1708-17.
  7. Rocha FJ, Schleicher U, Mattner J, Alber G and Bogdan C. (2007). Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect Immun 75: 3823-32.
  8. Schleicher U, Liese J, Knippertz I, Kurzmann C, Hesse A, Heit A, Fischer J A, Weiss S, Kalinke U, Kunz S and Bogdan C. (2007). NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 204: 893-906.
  9. Schleicher U, Hesse A and Bogdan C. (2005). Minute numbers of contaminant CD8+ T cells or CD11b+CD11c+ NK cells are the source of IFN-gamma in IL-12/IL-18-stimulated mouse macrophage populations. Blood 105: 1319-28.

 

Dr. med. Stefan Uderhardt

  1. Uderhardt S, Martins AJ, Tsang JS, Lammermann T and Germain R N. (2019). Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177: 541-555 e517.
  2. Freeman S A*, Uderhardt S*, Saric A*, Collins R F, Buckley C M, Mylvaganam S, Boroumand P, Plumb J, Germain R N, Ren D and Grinstein S. (2019). Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367(6475):301-305. (*shared first authorship)
  3. Gottschalk R A, Dorrington M G, Dutta B, Krauss K S, Martins A J, Uderhardt S, Chan W, Tsang J S, Torabi-Parizi P, Fraser I D and Germain R N. (2019). IFN-mediated negative feedback supports bacteria class-specific macrophage inflammatory responses. Elife pii: e46836. doi: 10.7554/eLife.46836.
  4. Uderhardt S, Ackermann J A, Fillep T, Hammond VJ, Willeit J, Santer P, Mayr M, Biburger M, Miller M, Zellner K R, Stark K, Zarbock A, Rossaint J, Schubert I, Mielenz D, Dietel B, Raaz-Schrauder D, Ay C, Gremmel T, Thaler J, Heim C, Herrmann M, Collins PW, Schabbauer G, Mackman N, Voehringer D, Nadler J L, Lee J J, Massberg S, Rauh M, Kiechl S, Schett G, O’Donnell V B and Krönke G (2017). Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med 214: 2121-2138.
  5. Gottschalk R A, Martins A J, Angermann B R, Dutta B, Ng C E, Uderhardt S, Tsang J S, Fraser I D, Meier-Schellersheim M and Germain R N. (2016). Distinct NF-kappaB and MAPK Activation Thresholds Uncouple Steady-State Microbe Sensing from Anti-pathogen Inflammatory Responses. Cell Syst 2: 378-390.
  6. Ipseiz N, Uderhardt S, Scholtysek C, Steffen M, Schabbauer G, Bozec A, Schett G and Krönke G. (2014). The nuclear receptor Nr4a1 mediates anti-inflammatory effects of apoptotic cells. J Immunol 192, 4852-4858.
  7. Rothe T, Gruber F, Uderhardt S, Ipseiz N, Rossner S, Oskolkova O, Bluml S, Leitinger N, Bicker W, Bochkov V N, Yamamoto M, Steinkasserer A, Schett G, Zinser E and Krönke G. (2015). 12/15-Lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest 125: 1944-1954.
  8. Uderhardt S, Herrmann M, Oskolkova O V, Aschermann S, Bicker W, Ipseiz N, Sarter K, Frey B, Rothe T, Voll R, Nimmerjahn F, Bochkov V N, Schett G and Krönke G (2012). 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36: 834-846.
  9. Uderhardt S and Kronke G. (2012). 12/15-lipoxygenase during the regulation of inflammation, immunity, and self-tolerance. J Mol Med (Berl) 90: 1247-1256.
  10. Kronke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, Schabbauer G, Zarbock A, Koenders M I, Axmann R, Zwerina J, Baenckler H W, van den Berg W, Voll R E, Kühn H, Joosten L A and Schett G (2009). 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol 183: 3383-3389.

 

Prof. Dr. rer. nat. David Vöhringer

  1. Krljanac B, Schubart C, Naumann R, Wirtz S, Culemann S, Krönke G and Voehringer D. (2019). RELMa expressing macrophages protect from fatal lung damage and reduce parasite burden during helminth infection. Sci Immunol May 24;4(35).
  2. Schubart C, Krljanac B, Otte M, Symowski C, Martini E, Günther C, Becker C, Daniel C and Voehringer D. (2019). Selective expression of constitutively activated STAT6 in intestinal epithelial cells promotes differentiation of secretory cells and protection against helminths. Mucosal Immunol 12:413-424.
  3. Oeser K, Schwartz C and Voehringer D. (2015). Conditional IL-4/IL-13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths. Mucosal Immunol 8: 672-82.
  4. Schwartz C, Turqueti-Neves A, Hartmann S, Yu P, Nimmerjahn F and Voehringer D. (2014). Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A 111: E5169-77.
  5. Voehringer D. (2013). Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13: 362-75.
  6. Huber S, Hoffmann R, Muskens F and Voehringer D. (2010). Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 116: 3311-20.
  7. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R and Voehringer D. (2010). Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33: 364-74.
  8. Reese T A, Liang H E, Tager A M, Luster A D, Van Rooijen N, Voehringer D and Locksley R M. (2007). Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447: 92-6.
  9. Voehringer D, Reese T A, Huang X, Shinkai K and Locksley R M. (2006). Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med 203: 1435-46.
  10. Voehringer D, Shinkai K and Locksley R M. (2004). Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20: 267-77.

 

PD Dr. rer. nat. Stefan Wirtz

  1. Kindermann M, Knipfer L, Obermeyer S, Müller U, Alber G, Bogdan C, Schleicher U, Neurath M F and Wirtz S. (2020). Group 2 innate lymphoid cells (ILC2) suppress beneficial type 1 immune responses during early pulmonary cryptococcosis. Front Immunol 11:209.
  2. Knipfer L, Schulz-Kuhnt A, Kindermann M, Greif V, Symowski C, Voehringer D, Neurath MF, Atreya I and Wirtz S. (2019). A CCL1/CCR8-dependent Feed-Forward Mechanism Drives ILC2 Functions in Type 2-mediated Inflammation. J Exp Med 216: 2763-2777.
  3. Schulz-Kuhnt A, Zundler S, Grüneboom A, Neufert C, Wirtz S, Neurath M F and Atreya I. (2019). Advanced Imaging of Lung Homing Human Lymphocytes in an Experimental In Vivo Model of Allergic Inflammation Based on Light-sheet Microscopy. J Vis Exp
  4. Kindermann M, Knipfer L, Atreya I and Wirtz S. (2018). ILC2s in infectious diseases and organ-specific fibrosis. Semin Immunopathol 2018 40: 379-392.
  5. Hefele M, Stolzer I, Ruder B, He G W, Mahapatro M, Wirtz S, Neurath M F and Günther C. (2018). Intestinal epithelial Caspase-8 signaling is essential to prevent necroptosis during Salmonella Typhimurium induced enteritis. Mucosal Immunol 11: 1191-1202.
  6. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S and Neurath M F. (2017). Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 12: 1295-309.
  7. Mahapatro M, Foersch S, Hefele M, He G W, Giner-Ventura E, McHedlidze T, Kindermann M, Vetrano S, Danese S, Günther C, Neurath M F, Wirtz S* and Becker C*. (2016). Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Reports 15: 1743-56. (*shared senior authorship)
  8. McHedlidze T, Kindermann M, Neves A T, Voehringer D, Neurath M F and Wirtz S. (2016). IL-27 suppresses type 2 immune responses in vivo via direct effects on group 2 innate lymphoid cells. Mucosal Immunol 9: 1384-94.
  9. McHedlidze T, Waldner M, Zopf S, Walker J, Rankin A L, Schuchmann M, Voehringer D, McKenzie A N, Neurath M F, Pflanz S and Wirtz S. (2013). Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357-71.
  10. Wirtz S, Billmeier U, McHedlidze T, Blumberg R S and Neurath M F. (2011). Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141: 1875-86.

 

Prof. Dr. Vasily Zaburdaev

  1. Kaptan D, Penkov S, Zhang X, Gade V R, Raghuraman B K, Galli R, Sampaio J L, Haase R, Koch E, Shevchenko A, Zaburdaev V and Kurzchalia T V. (2020). Exogenous ethanol induces a metabolic switch that prolongs the survival of elegans dauer larva and enhances its resistance to desiccation. Aging Cell e13214. DOI:10.1111/acel.13214.
  2. Passucci G, Brasch M E, Henderson J H, Zaburdaev V and Manning M L. (2019). Identifying the mechanism for superdiffusivity in mouse fibroblast motility. PLoS Comput Biol 15(2): e1006732.
  3. Pönisch W, Eckenrode K B, Alzurqa K, Nasrollahi H, Weber C, Zaburdaev V* and Biais N*. (2018). Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. Scientific reports 8 (1):16567 (*shared corresponding author)
  4. Joseph S R, Pálfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A and Vastenhouw N L. (2017). Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. Elife 6: e23326.
  5. Pönisch W, Weber C A, Juckeland G, Biais N and Zaburdaev V. (2017). Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates. New J Phys 19:015003.
  6. Fitz V, Shin J, Ehrlich C, Farnung L, Cramer P, Zaburdaev V and Grill S W. (2016). Nucleosomal arrangement affects single-molecule transcription dynamics. Proc Natl Acad Sci of USA 113:12733-12738.
  7. Munder M, Midtvedt D, Franzmann T, Nüske E, Otto O, Herbig M, Ulbricht E, Müller P, Taubenberger A, Maharana A, Malinovska L, Richter D, Guck J, Zaburdaev V and Alberti S. (2016). A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. Elife 5: e09347.
  8. Zaburdaev V, Biais N, Schmiedeberg M, Eriksson J, Jonsson A B, Sheetz M P and Weitz D A. (2014). Uncovering the mechanism of trapping and cell orientation during Neisseria gonorrhoeae twitching motility. Biophys J 107: 1523-1531.
  9. Wilking J N, Zaburdaev V, De Volder M, Losick R, Brenner M P and Weitz D A. (2013). Liquid transport facilitated by channels in Bacillus subtilis Proc Natl Acad Sci of USA 110:848-852.
  10. Zaburdaev V, Uppaluri S, Pfohl T, Engstler M, Friedrich R and Stark H. (2011). Langevin dynamics deciphers the motility pattern of swimming parasites. Phys Rev Lett 106: 208103.

 

Prof. Dr. rer. nat. Mario M. Zaiss

  1. Rapin A, Chuat A, Lebon L, Zaiss M M, Marsland B J and Harris N L. (2019). Infection with a small intestinal helminth, Heligmosomoides polygyrus bakeri, consistently alters microbial communities throughout the murine small and large intestine Int J Parasitol. 50(1): 35-46.
  2. Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, Hoffmann J, Raifer H, Vachharajani N, Carrascosa L C , Lamp B, Nist A, Stiewe T, Shaul Y, Adhikary T, Zaiss M M, Lauth M, Steinhoff U and Visekruna A. (2019). Gut microbiota-derived metabolite pentanoate suppresses immunopathology through metabolic and epigenetic reprogramming of lymphocytes. Nat Commun 10(1):760.
  3. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Krönke G, Herrmann M, Mougiakakos D, Strowig T, Schett G and Zaiss M M. (2018). Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 9: 55.
  4. Sarter K, Kulagin M, Schett G, Harris N L and Zaiss M M. (2017). Inflammatory arthritis and systemic bone loss are attenuated by gastrointestinal helminth parasites. Autoimmunity 50: 151-57.
  5. Zaiss M M and Harris N L. (2016). Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol 38: 5-11.
  6. Mosconi I, Dubey L K, Volpe B, Esser-von Bieren J, Zaiss M M, Lebon L, Massacand J C and Harris N L. (2015). Parasite proximity drives the expansion of regulatory T cells in Peyer’s patches following intestinal helminth infection. Infect Immun 83: 3657-65.
  7. Zaiss M M, Rapin A, Lebon L, Dubey L K, Mosconi I, Sarter K, Piersigilli A, Menin L, Walker A W, Rougemont J, Paerewijck O, Geldhof P, McCoy K D, Macpherson A J, Croese J, Giacomin P R, Loukas A, Junt T, Marsland B J and Harris N L. (2015). The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43: 998-1010.
  8. Mosconi I, Geuking M B, Zaiss M M, Massacand J C, Aschwanden C, Kwong Chung C K, McCoy K D and Harris N L. (2013). Intestinal bacteria induce TSLP to promote mutualistic T-cell responses. Mucosal Immunol 6: 1157-67.
  9. Zaiss M M, Maslowski K M, Mosconi I, Guenat N, Marsland B J and Harris N L. (2013). IL-1beta suppresses innate IL-25 and IL-33 production and maintains helminth chronicity. PLoS Pathog 9: e1003531.
  10. Herbst T, Esser J, Prati M, Kulagin M, Stettler R, Zaiss M M, Hewitson J P, Merky P, Verbeek J S, Bourquin C, Camberis M, Prout M, Maizels R M, Le Gros G and Harris N L. (2012). Antibodies and IL-3 support helminth-induced basophil expansion. Proc Natl Acad Sci U S A 109: 14954-9.