• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
DFG Research Training Group 2740 Immunomicrotope –
  • FAUTo the central FAU website
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help

DFG Research Training Group 2740 Immunomicrotope –

Navigation Navigation close
  • Research
    • Project areas
      • Project area B „Metabolism“
      • Project area A “Micromilieu”
        • A1: Control of Citrobacter rodentium by oxygen-dependent B cell regulation
        • A2: Regulation of local tissue oxygenation in cutaneous leishmaniasis
        • A3: Induction and regulation of Coxiella burnetii persistence by microenvironmental factors
        • A4: The regulatory role of fibroblastic reticular cells during intestinal bacterial infections
        • A5: Impact of microenvironmental factors on neutrophil effector functions directed against Salmonella (S.) enterica serovar Typhimurium
        • A6: Eosinophils shape the tissue micro milieu and immune response in cutaneous leishmaniasis
        • A7: Characterization and mathematical modeling of the STAT6-regulated micro milieu in response to Nippostrongylus (N.) brasiliensis infections
        • B1: Molecular mechanisms linking metabolism and chromatin remodelling in the human malaria parasite Plasmodium falciparum
        • B2: Characterization and integrative bioinformatic modeling of metabolic and micromilieu factors promoting survival or control of Leishmania parasites
        • B3: Immuno-metabolomics of invasive aspergillosis
        • B4: Acetate, a secreted metabolic product of Heligmosomoides polygyrus facilitates tissue invasion and maintains chronic infection
        • Publications
    Portal Research
  • Program
    • Curriculum
      • RTG 2740-specific training measures
        • Lectures, seminars and research meetings
        • Workshops and practical courses
        • Annual and other scientific events
      • Training in general professional and transferable skills
      • Measures to promote national and international networking
    • Organization
    Portal Program
  • About us
    • Doctoral candidates
    • Supervisors
    • Coordinator
    Portal About us
  • How to apply
  1. Home
  2. Research
  3. Project areas
  4. Project area B “Metabolism”
  5. B4: Acetate, a secreted metabolic product of Heligmosomoides polygyrus facilitates tissue invasion and maintains chronic infection

B4: Acetate, a secreted metabolic product of Heligmosomoides polygyrus facilitates tissue invasion and maintains chronic infection

In page navigation: Research
  • Project areas
    • Project area A “Micromilieu”
      • A1: Control of Citrobacter rodentium by oxygen-dependent B cell regulation
      • A2: Regulation of local tissue oxygenation in cutaneous leishmaniasis
      • A3: Induction and regulation of Coxiella burnetii persistence by microenvironmental factors
      • A4: The regulatory role of fibroblastic reticular cells during intestinal bacterial infections
      • A5: Impact of microenvironmental factors on neutrophil effector functions directed against Salmonella (S.) enterica serovar Typhimurium
      • A6: Eosinophils shape the tissue micro milieu and immune response in cutaneous leishmaniasis
      • A7: Characterization and mathematical modeling of the STAT6-regulated micro milieu in response to Nippostrongylus (N.) brasiliensis infections
    • Project area B “Metabolism”
      • B1: Molecular mechanisms linking metabolism and chromatin remodelling in the human malaria parasite Plasmodium falciparum
      • B2: Characterization and integrative bioinformatic modeling of metabolic and micromilieu factors promoting survival or control of Leishmania parasites
      • B3: Immuno-metabolomics of invasive aspergillosis
      • B4: Acetate, a secreted metabolic product of Heligmosomoides polygyrus facilitates tissue invasion and maintains chronic infection
  • Publications

B4: Acetate, a secreted metabolic product of Heligmosomoides polygyrus facilitates tissue invasion and maintains chronic infection

B4: Acetate, a secreted metabolic product of Heligmosomoides polygyrus facilitates tissue invasion and maintains chronic infection

The immune system has co-evolved with the ubiquitous intestinal parasitic helminths. During this co-evolution, intestinal helminths, such as Heligmosomoides polygyrus (Hp), have developed potent mechanisms to regulate their hosts’ immune response in order to continue their symbiosis and succeed to establish chronic infections (Zaiss et al., 2013). However, the precise mechanisms that enable Hp to penetrate host tissue and modulate the gut microbiota (Zaiss et al., 2016) to promote chronic infections remain elusive. We hypothesize that acetate, a short chain fatty acid (SCFA), plays a role in both, penetration and modulation

 

Supervisor

Mario Zaiss

Prof. Dr. rer. nat. Mario Zaiss

Universitätsstr. 25a
91054 Erlangen
  • Phone number: +49 9131 85-33794
  • Email: mario.zaiss@fau.de
  • Website: https://www.medizin3.uk-erlangen.de/forschung/arbeitsgruppen/ag-prof-dr-m-zaiss/
More › Details for Mario Zaiss
Universitätsklinikum Erlangen
Mikrobiologisches Institut

Wasserturmstr. 3/5
91054 Erlangen
  • Imprint
  • Privacy
  • Accessibility
Up